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Abstract- Nonextensive entropy measure, Tsallis Entropy (TE), 
was undertaken to monitor the brain injury after cardiac 
arrest. EEG of human and experimental injury model of rats 
are investigated. In both conditions TE decreases in bad 
physiological functional outcome. As the brain recovers from 
injury, the TE will also gradually return to normal level. 
Meanwhile, TE also shows good sensitivity to different grades 
of asphyxic injury. This method provides a novel real time 
brain injury indicator and may be a useful in developing a 
diagnostic monitoring tool. 
Keywords: electroencephalogram, generalized entropy, brain 
injury 
 

I. INTRODUCTION 
 

About 60% of those persons who are successfull y 
resuscitated after cardiac arrest subsequently die of extensive 
brain injury every year in the United States [1]. Real time 
monitoring the brain asphyxia state after resuscitation of 
cardiac arrest is a criti cal clinical problem. However, there 
are no current approved real time objective assessments used 
to monitor brain injury.  Clinicians are expecting a “brain-
holter” to detect and monitor the cerebral function, which 
may require the practical and effective quantitative EEG 
(qEEG) methods that extract the primary brain feature 
information from the EEG time series. 

In recent years, information measures including the 
traditional Shannon entropy have been shown to be effective 
in dealing with complex signals[2]. Shannon entropy is 
based on the Boltzmann-Gibbs (BG) statistical mechanics 
and standard thermodynamics, which is restricted for 
additive (extensive) systems.  Over the last few years, it has 
been realized that Shannon entropy fail s to yield testable 
results for systems with long-range interactions, long-term 
memory effects or abrupt changes li ke spikes and bursts, [3]. 
Thus, it is reasonable to look for alternative information 
measures that may be better adapted to those nonextensive 
systems. A nonextensive (nonadditive) entropy now called 
Tsalli s entropy (TE) was postulated by Tsalli s[4].  In the past 
ten years TE has proved successful in describing systems 
with long-range interactions, multi fractal space-time 
constraints or long-term memory effects. In this study we 
attempt to apply this kind of novel entropy measure in 
monitoring the EEG of injured brain.  
 

II . TSALLIS ENTROPY MEASURE 
The classical Shannon Entropy[5] is measured by the 

distribution of probabiliti es }{ ipp = : 

( )∑
=

−=
M

i
ii ppSE

1

ln    (1) 

  
allowing for 00ln0 = , where pi is the probabilit y of 

finding the system in the ith microstate with 10 ≤≤ ip  and 

1
1

=∑
=

M

i
ip . M is the total number of microstates.  This 

formalism (1) has been shown to be restricted to the domain 
of validity of the BG statistics, which describes a system in 
which the effective microscopic interactions and the 
microscopic memory are of short range.  

One type of generalized entropy, named Tsallis entropy, 
has proved effective as a measure of nonextensive system.  
Tsalli s entropy is defined as: 
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Eq. (2) recovers to the usual Shannon entropy in  (1).  The 
nonextensivity of Tsalli s entropy is: 
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Considering 10 ≤≤ p  in (2), i
q
i pp ≤ for q>1 and 

i
q
i pp ≥ for q<1, hence q>1 and q<1 will respectively 

correspond to the frequent and rare events. Meanwhile, the 
EEG signals in brain injury are complex, punctuated for 
example by frequent burst activity during the recovery of 
asphyxic injury. The source of EEG is generally accepted as 
synaptic potentials from the cortical neurons, while the 
source of bursting is probably the deep nuclei such as the 
thalamic and reticular thalamic neurons. There is very li kely 
an ongoing interaction between the two generators through 
thalamocortical and cortico-thalamic tracts. Thus, EEG in our 
study demonstrates mixing of long-range interactions 
suggesting the use of a nonextensive entropy description. In 
our work we justify the superextensive hypothesis with the 
choice of 1>q  based on the previous research on EEG.[2] 
 

III . MATERIALS 
 
We demonstrated the TE in both the experimental EEG of 

animals and the clinical human EEG. We obtained 
experimental EEG recordings from anesthetized rats for 
studying the information evolution in brain rhythms 
following asphyxic injury.  Asphyxic cardiac arrest and 
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resuscitation protocol approved by the animal Care and Use 
Committee of the Johns Hopkins Medical Institutions was 
performed as modified from Katz and colleagues[6]. The 
experimental protocol is as follows: 

Wistar rats (300±25 g) were randomly assigned to surgical 
graded asphyxia of 3, 5 min and hypoxia preconditoning   
(n=5 per group). The animal subject was monitored for 10 
minutes baseline and 5 minutes anesthetic (halothane) 
washout followed by 3 or 5 minutes global asphyxia and its 
subsequent recovery. For the preconditoning rats, 25 min 
hypoixa was conducted at about one hour before the global 
aspyxia. Two channels of EEG using sub-dermal needle 
electrodes (Grass Instruments, Quincy, MA) in right and left 
parietal areas, one channel of ECG and one channel of 
arterial pressure were recorded continuously before the 
insult, during the insult, and for about 5 hours of recovery. 
The signals were digitized using the data acquisition 
package CODAS (DATAQ Instruments INC., Akron OH). 
Sampling frequencies of 250Hz and 12bit A/D conversion 
were used.  Before applying the TDE method, the EEG was 
filtered (0.5~30Hz) and the ECG artifacts removed[7]. 

Human EEG was recorded from: patient A: high grade 
injury with long cardiac arrest (CA) time (20 min) and long 
cardiopulmonary resuscitation (CPR) time (30min), didn’ t 
survive in the end; patient B: low grade injury with short CA 
time (4 min) and short CPR (5min) and survived;  patient C: 
normal volunteer as a reference.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

IV. RESULTS 
 
We applied the TE to the experimental EEG data from the 

3 min and 5 min asphyxia cohorts. Each 5-hour EEG record 
was analyzed minute by minute. Within each minute 
segment we estimated the TE with (2) with the parameter 
q=3.0 and amplitude partitions M=30; for each rat, the 
entropy results are normalized by the mean TE of the 
baseline EEG. Fig. 1A and Fig. 1B respectively correspond 
to the 3 min and 5min asphyxia group.  

In Fig. 2 we analyzed the human EEG selected between 
O1 and O2 channels. The parameters used in TE are the 
same as those Fig. 1.  
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V. DISCUSSION 
 
The traditional l inear methods of the EEG analysis 

(spectral analysis, AR modeling) are based on the 
assumption that the observations of the electrical field of the 
brain are of stationary random processes. For a variety of 
physiological reasons, EEG rhythms in disease may require 
nonlinear approaches. The nonlinear theory offers novel 
ways to characterize the behavior of complex yet 
deterministic systems. Since the mid-1980s various methods 
derived from nonlinear dynamics have been applied to 
biosignal processing. The nonlinear dynamics methods 
employ a set of metric parameters such as correlation 
dimensions, Lyapunov exponents, Kolmogorov and 
approximate entropies, and are usually based on the 
distances between points in an appropriate embedding space. 
Calculations of these parameters require large data sets. 
Meanwhile, the stationarity of the signal to be analyzed is 
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Fig. 1. (A) Global entropy trends for the EEG from several animals subjects 
in the 3 min cardiac arrest injury group, (B) Global entropy for several 
animals in the 5 min injury group.  The sharp drop correspond to the injury 
incident followed by recovery  over the next 5 hr indicating partial 
restoration. 
 
 

Fig. 2. Tsall is entropy (q=3.0) analysis of O1-O2 channel EEG of human. 
patient A: high grade injury with long CA time (20 min) and long CPR 
time (30min), didn’ t survive in the end; patient B: low grade injury with 
short CA time (4 min) and short CPR (5min) and survived;  patient C: 
normal volunteer. 
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usually taken for granted. However, this condition is actuall y 
not satisfied in most of the cases while dealing with EEG 
signals [8]. Previous research has also shown that the EEG is 
not only high dimensional nonlinear but also 
nonstationary[9]. The electrical activity of the brain is 
usually time-variable, nonstationary and irregular, especiall y 
in pathological conditions such as epileptic seizures or 
hypoxic-asphyxic injury.   

Tsalli s entropy is based on the generalized BG statistical 
mechanics. The parameter q indicates the nonextensive 
degree of a system. The different q values correspond to 
different statistical mechanicss. The appropriate choice of 
the entropic index q is significant but still remains to be 
studied. Literature has pointed to the role of q in the entropy 
computation for EEG studies [10]. In our study it is 
hypothesized that the brain’s electrical activity is represented 
by superextensive (q>1) system. Interactions within the 
brain are the foundation of its higher function. The 
interactions and information transmission across the brain 
cortex have been reported [11]. In our experiments, although 
the origins of EEG are cortical, the origin of the bursts is 
thought to be thalamic residing in deep brain area [12]. 
Interactions occur through thalamocortical and cortico-
thalamic tracts. Experiments have shown the long-term 
thalamo-cortical interactions [13]. Therefore, it is safe to say 
that the data analyzed represent at least two channels A and 
B between which there is information transmission, which 
means there exists mutual information between A and B so 

that ( ) )()( BTEATEBATE +<∪ . Comparing with (3) 
we get q>1.  In our case, we refer to our previous empirical 
choice for brain injury description with q=3[14]. 
 

VI. CONCLUSIONS 
 
The nonextensive entropy provides a novel statistical 

description of the brain rhythms during asphyxic injury and 
recovery. Even though the recovery mechanism of brain 
injury is highly complex, the TE seems to expose the nature 
of brain EEG in the form of reduction during the bad 
physiological function outcome. The reduction level and 
recovery rate of TE are also consistent with brain 
physiological states. These trends may prove to be useful in 
developing a diagnostic monitoring tool. 
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